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Thus the solution of the difference equation (3.58) is given by

Pn = et Ey(— 1) g i1k
It is obvious that for A > 0, £, behaves as the exact solution and £ dies
out since | £, | < 1, but for A < 0, &5 decreases as does the exact solution
but £, oscillates with increasing amplitude. This behaviour is independent

of h. Therefore, Milne’s method is stable for i = 0 but unstable for /i < 0.
It is a weakly stable method.

3.5.5 Propagated error estimates

The constants Ay, A2, ..., 4k in (3.47) are chosen so that the initial con-
ditions are satisfied; thus :

Ey =Ay 44, ot
E = A +Ar26m + .o+ Aibin

Ee_y = Ay €571+ A5 851 A Ar £

where E; = 0,1,2, ... k—1

E]—; _L. j =
hAp'(1)°
The principal root {4 of the characteristic equation for sufficiently small
Ah is approximately equal to eM. The other roots éa, €, ..., £k are extra-
neous roots. The stability of the numerical method requires that these
extraneous roots have magnitude less than unity so that the corresponding
components of the error are negligible. For stable methods we therefore do
not need to know 4,, ..., Ax. To find A4,, we use Cramer’s rule and obtain

E, 1 e 1

E, b o Ema
B & . g
= 3.61
A 1 I ... 1 (361

$in € o émn

Yot gkt k-1
1A ' o &

Substituting
Cén) = ciey 7' foxy €724 0,
in Equation (3.61), we can write
4, = %=t Ex_y+ck_s Ex_s+ ...+ coEp
C(éw)
which, if the initial errors ¢; are constant and equal to €, becomes

e~ T\ CO)
A'_( hAp'(l)) CEw
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In (3.47) we now substitute this last expression for A, and put £ = M
Substituting nh = t.—fo and neglecting the factor C(1)/C(£,s) which is close
to unity, since £,4as h — 0 is equal to 1, we get the estimate of the propa-
gated error for any stable formula as *

' T T
€ c2 (6— W(-l-)-) exp (A(ta—10) )+ ey (3.62)

The first term is dominant when A > 0, while the second term is dominant:
when A < 0. For small A it is worth noting the existence of the limit in
(3.62) as A — 0. It yields an expression which increases linearly with (tx—to).

3.6 PREDICTOR-CORRECTOR METHODS

We now discuss the application of the multistep methods for the solution
of the initial value problems.

3.6.1 Use of implicit multistep methods

. Let us assume that the values of the ordinates and slopes are given at k
points. We are required to determine yn41 from the formula

Yus1 = hbof(tnes Yae)+ é[d: Ynoit1-Hh bifnciri)

As we cannot solve Yn4y directly, we use an iterative procedure:
P: Predict some value y©), for yas
E: Evaluate f(ta+1, ¥

C: Correct y'%, to obtain a new Y, for yawt

]
Y, = hbof(tnsr, Y4 )+ gl[m Yreigrth by faci]

E: Evaluate f(ta+1, ¥{),)
C: Correct (],

X
@ = h by fltn+1, Yo )+ ig [@ Ynterth by fa-isi]

The sequence of operations
PECECE...
determines for yn+i a sequence of values
YO Y Vg - (3.63)

Let us examine the convergence of this sequence.
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THEOREM 3.7 Let Y#), be a sequence of approximations 1o y,.,,. If forall
values of y close to yn41 and including the values y = YOu ¥, ..., we have

I%(’m y)’ SL | (3.64)

where L satisfies L < | 1/hb, | , then the sequence {y®) } converges to Vit
For the Adams-Moulton methods, we have

| AL | < 2 =20 for second order method,
|AL | < 153 = 2.4 for third order method,

| AL | < -g— = 2.67 for fourth order method,

| AL | < g—? = 2.87 for fifth order method,

3.6.2 P(EC)" E scheme

The determination of Yn+1 8t taty from an implicit multistep method with
an assumed value Y89, requires the procedure Prcdict-Estimate-Correct-...
(PECECE...) which converges to yuyy if | hLby | < 1.

A simple way to find Y%, is to use an explicit method, Thus, a predictor
formula (explicit multistep formula) is used to obtain a first estimate of the

iteratively until convergence is obtained. This we shall denote by P(ECy" E,
The predictor-corrector scheme

b’
yo, = E‘. (@ Yuetsr+h b f, ;. (3.65)

k
P = X (@ Yutirth by fopey)+h bofSe=1Mm (.66

Ynyp = y.(.:)l (3-67)
is 8 P(EC)™ E scheme if f,,, = ™,
where L = flnn, yor,)

Letus illustrate P(EC)Y"E scheme for the equation y’ = Ay,
P = E @O0y,
E®, = by,
Cotly = 3 @HhAB) ey

R

+h Mo g (al(°)+h Ablm)) y"-'“'l
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The P(EC)™E scheme can be wrtiten as
Y = ynthfa

W = y~+—-( GO4L), p=1(1)m

) y§+l = y‘"’
furr = 1) 3.72)
where I8 = ftar, YR

Let us examing the equatlon ¥’ = Ay. The true solution is (t) = c exp (A1),
s0 that Y(tas) = M W(ta).
The above P(EC)"'E scheme becomes

YO = (1+Mh) ya —

A, = yut ?[,\(1’+Ah) Vat+Apa]
- ( 1+Ah+“i)2) 2

Y = nt -—-[ (1+Ah+ iy )y.+hyu]
= (1+Ah+ Qﬂ’+ (—M—)’) In

A = (e GF GO,

[ Gl )

. Al "
1- e
M . M "+
' ‘*‘2“2('2‘)
| M y.
-3
) m+
1+ ’%’-z("-z’!)
Therefore, Yry = 7 N 7a (3.73,
, 1-22
2

If the corrector is iterated to converge, i.e. m = oo, Equation (3.73) will
converge if | Ak | < 2, which is the required condition.
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The truncation error and the stability of P(ECY"E scheme can be deter-
mined if we substitute y, = y(t,)=¢, in (3.73). We find

m+2!
1+ ’—"1-2("—")

€n+l+y (’n+l) = 2 Ah 2 (y (’n)+¢l|)
1-22 .
m+2
+3-2(3)"
or gy = b —eM y(t»)
-3
i+ -2 (%) .,
+ € (374)

The first term on the right hand side of (3.74) is the local truncation error
while the sccond term is the contribution to the error from the previous

step. The relative local truncation error given by

/\h Ah m+2
1+ 8-a( )
Ah

1-=

2
- -17 (AR+0 (| A1 ) for O corrector

-

becomes

——:S—(I\h)’+o ( I Ah |4) for 1 corrector
l_li (Ah)’-l;O (1 Ar |9 for 2 corrector
T!f (ARY*+0 (| Ar |4) for 3 corrector

We thus see that the application of the corrector more than twice does not
improve the result because the minimum local truncation error is obtained

at this stage.
3.6.3 Results from computation for Adams P-C methods
The following initial value problems
D ¥y=-y y(0) =1
i) Y =-» »0) =1
(i) Y = —=1(y+y3), »0) =1
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Assume that ¢ changes slowly from step to step and that he} is small com-
pared to the truncation error. Subtracting (3.80) from (3.79), we get

PRI = Coa= o) B YD ()40 (173 (3.81)

Thus the estimates of the truncation error in predictor and: corrector
formuia can be written as

Cpet BPHL y2D (£,)4-0 (hP+2)
= ;+| (Cont —C;-H)-l ()'s(-ﬁ-’l "yf-?l)

and Cp+1 b7 y+D ()40 (h#+2)
= Cpt1 (CP+I—C;+[)-I(yg-?-I _J’QI)

The above estimates enable us to control and adjust the step size in P—C
set. However, if we assume that the predicted and corrected values at each
step change slowly, we can write

Myt = pn+1+C;.,.1 (Cont __c;.“)-l (Pn—cn)

which will be a modified value of the predicted value. Similarly the modified
value of the corrected value will be

Va1 = ent1+Cpi1 (Cpry—C) L )™! (Pat1=Cns1)

where my.; and Ya+1 denote the modified predicted and corrected values

of Ynsq.
Thus the modified P—C scheme becomes

.

Predict : ppe; = ‘g @D ya_tsr+h 6P y,_i0p)

Modify : mnsy = par+C;,, (Cp+1‘c;;+x)-l (pn—c»)
k=1 '

Correct : €4y = ;l(a:y,.-:+1+h by, ¢s)+hbom,,

Final value : ‘
Ynyy = cn+]+cp+1b(cp+| —C;...;)"" (Pne1=cns1) (3.82)

The Runge-Kutta method may be used to calculate the starting values,
i.€. y1, 3, +--, yn. The quantity p,—c, that is needed for the modification on
the first step is generally put

- Pa—Cx=0
The characteristic equation can be obtained if we substitute y' = Ay and
Pn=A1 € yn = A1 £, my = A3 £, cx = A, £*in (3.82). We find a system
of four simultaneous linear homogeneous equations in the constants Ay, Ay,

Ay and A,. For this system to have a nonzero solution it is recessary that
the determinant of the coefficient matrix vanishes. This leads to
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¢ — £ (§) 0 v
— hAd® (£)) .
C‘;-H- 7 _ _ C;+1
£+Cp+1 ~Cott 0 ¢ Cr1—Cpiy
0 g —(p(£)—hra(£))  hAbet* —g [=0
— hAbot*
—Cost -1 0 G
Crt1=Con - Cpi—Coyy

(3.83)

where p® (¢), 0@ (£), p (€) and o (¢) are defined in (3.69). Simplifying, (3.83),
we get . IR

[ Rabo (61— S2tL e] (5O (&) —hro® (£))

P+
gk -k+1(p(§)—hAa (£)) = 0  (3.84)
as the characteristic equation of the modified predictor-corrector method.
_On simplifying the characteristic equation (3.84) for the Adams predictor-
corrector methods, we find .

Batri=0 . (3.89)

where the coefficients ¢; are given by
Co = 1-R
ca = (R-0)(1 +ﬁb“}’)—0—-(l+ﬁb,)

¢y = (R—6)RbQ'+0 (1+RbQ)— b,
¢y = (R=0) FibQ+0Rb, ~Bby, j =3, . k+2  (3.86)

and briy =0 R= g‘.‘“
f T3 B
bk+3 =0 h- = M
‘=0 0 = Fibo

Equation (3.85) is a (k+2)th degree polynomial and will have one principal
root, and k+1 extraneous roots. _

The principal root will approximate the true solution e* of the differential
equation y' = Ay, y(0) = 1, % < 0. We are concerned with the rate of
growth of the extraneous roots as n gets large. The extraneous roots will
not produce undesirable effects on the numerical solution if the predictor-
corrector is stable and convergent, thatis | 0] < 1. The predictor-corrector
is stable if and only if the roots of (3.85) are inside the unit circle; it is also
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The absolute value of the largest root of Equation (3.85) is shown in
Flgure 3. 9

Example 3.5 Solve the initial value problém
Y =t+y,y0) =1t € [0, 1]

using second order Adams modified’ predictor-corrector method for step
length h = .1.
In order to apply the second order Adams modified P— C method

p"+l = yﬁ+ 2 (3y” yn—l)

Mpyy = P.n+1""? (Pn_cn)
h ., .

Cnty = y»+‘2_' (m"+] +yn)

Vnt1 = c..+.+—- (pn—=cn),n =1, 2,..

we need the values of y(t) and y’ (t) forn=1,
The exact vatues are

Yo = ls y; = 19
£y 1 = 1.11034184, ¥, = 1.21034184
Forn =1

D2 = J’l+ (3}" yo)

= 1.11034184+ -zl (3% 1.21034184—1)
— 1.241893116

5
v - Me =Py~ (p1—c))

Taking, p,—c; = 0, we obtain
my; = p, = 1,.241893116
my = ty+my = 2+1.241893116
= 1.441893116

&= y+ —g— (my+y))

= 1.1 1034184+—'21— (1.441893116+1.21034184)
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For n=2

p—c2 =

=

P =

==

p3i—¢Cs

Y3 =

139

1.2429535878
1.241893116 — 1.2429535878

—0.0010604718

1
atg (p2—c¢2)

12429535878 — -é— (0.0010604718)

1.2427768425

h ’ ’
yt 5 3y,—y)

1.2427768425 +—'21- (4.3283305275—1.21034184)
1.398676276875

5
=p-F (p2—c2)

1.398676276875— -%- (—0.0010604718}

1.399560003375
ty+m;
.3+41.399560003375
1.699560003375

h, ., .
»n+ 7("1; +y)
1.2427768425 +-'-;—(1 699560003375 +1.4427768425)

1.39989368479375
1.398676276875—1.39989368479375

—0.00121740791875

1
at e (p3—ca3)

1.39989368479375+ %— (—0.0012740791875)

1.39969078347396
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The exact solution is given by
y(@) = 2e'—1-1
The computed solution is tabulated in Table 3.12.

TABLE 3.12 SOLUTION OF y* = t4y, ¥(0) = 1, h = 0. 1 BY THE
SECOND ORDER ADAMS MODIFIED P-C METHOD

t Yn Prn—Cn ¥(ta)
] , 1 , 1
0.1 1.1103418 1.1103418
0.2 1.2427768 —0.0010604720 1.2428055
0.3 1.3996908 —0.0012174079 1.3997176
0.4 1.5836270 —0.0013457670 1.5836494
0.5 1.7974259 —0.0014872370 1.7974425
0.6 2.0442281 —0.0016436510 2.0442376
0.7 2.3275048 —0.0018165196 2.3275054
0.8 2.6510921 —0.0020075696 2.6510819
0.9 3.0192296 —0.0022187130 3.0192062
1.0 3.4366029 —0.0024520631 3.4365637

3.7 HYBRID METHODS

These methods are also called multistep methods with nonstep points.
The linear k-step method (3.26) contains 2k+1 arbitrary parameters. We
can determine these parameters by satisfying 2k+1 relations of the type
(3.30) in which case the order of the method will be 2k. However, the stabi-
lity requirements restrict this order to k+1 if k is odd and to k+2 if k is
even. The k-step methods based on numerical differentiation have order k
and stable methods are obtained for k < 6. To increase the order of the
stable k-step methods, we modify (3.26) by including a linear combination of
the slopes at several points between 7, and t,+;. The modified k-step method
with v slopes is given by

k k v
Yny1 = ’ga; Yn-i+1+h jgo b; ﬁx-]+1+hj§ ¢y fn—0,4+1 (3.88)

where ay’s, by’s, ¢;’s and 0,’s are 2k-+2v+1 arbitrary parameters. Further-
more, 0 < 6; < 1,j=1,2,..,0.

If by = 0, the formula (3.88) is called an explicit hybrid method, other-
wise an implicit hybrid method. The consistency conditions for (3.88) are
found to be

p(1) = 0,p' (1) = o(1)+ ,);l ¢ (3.89)
where p(£) and o(¢) are defined by
p(&) = £+— jzf;l ay €1, ofé) =§0 by &+
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The formula (3.88) is called stable if p(£) bas no zeros outside the
unit circle and no multiple zeros on the unit circle; it is of order p if for any
y(t) € C®*+ and for some non-zero Cps1, We have

k k
.V(tn+1)" Z aj )’(fn_m)—h;. b] f(tn—!+l, y(tn—]H»
j=1 =0 »
—h Ji‘,l 1 f (tnosys1, Y(tnss+1))

1 ’,
= ol Con o255 +0GP) (3.90)

where y'(t) = f (¢, y). In practice, we use one or two non-step points in
(3.88). »
The k-step method with one non-step point can be written in the form

k 3
Ynrr = ,2-11 a yn_j+l+hj§lbj frogrrFhes fa-or41 (3.91)

where ay’s, b;’s, ¢; and 0, are arbitrary and0 < 0, < 1.
We now discuss in detail a few special cases of (3.91).

/

3.7.1 One step hybrid methods

For k = 1, we write (3.91) as

Vnrs = @Yath(bo far1+bi fi)+herfo-nren (3.92)

where ay, by, by, ¢ and 8, are arbitrary and 6, # Oor 1.

Expanding each term jn (3.92) in Taylor’s series about ¢, and equating the
coefficients of like powers of h, we obtain a family of third order methods
if the following equations are satisfied :

! a = 1

by+bot+e, =1

bo+(1—91)01 =}
1hy+3(1 -0, = § (3.93)

The principal term of the truncation error is given by

1 0} s
] C4h‘y(tn)+0(h)

where C4 =1 “4bo"4cl (1 —0()3 .
" Retaining b, as arbitrary, we find the solution of the equation in (3.93) as
1—4b,

= 1 =

a =1 b= 7(i=3b)
o = 3(1—2b)2
! 4(1—3b)
8, = 2(1—3b)

3(1-2by)
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Thus for arbitrary 8, # 0, 1, or 2, we get methods of order 5 and the trunca-
tion error-is given by

K (16—4806,+246}) ©
o @3-158) ey tO®) (3.98)

If we take by = 0, i.e. 8; = (9—4/41)/10, we have an explicit.h‘ybrid
method of order 5. The value 8; = 1/2 gives an implicit hybrid method of
order 5 as

Yot = 3 2= I+ g (18for s+ 12fimfocs+64faryr2)

The principal term of the truncation error vanishes for §;, = 1—1/ 4/3, and
for this value of 8, we get a sixth order method with the following values
for the parameters :

ay = 16/(8-+5v/3), a3 =—(8—5v/3)/(8+5v'3)

bo = (v/3+1)/[(8+5v3) (3—+/3)]

by = 8+4/3/[3(8+54/3)]

by = (v3-1)/I(8+5v3)3++/3)]

1 = 6v/3/(8+5v3), 0, = 1—1/y/3 (3.99)
Substituting the values of the parameters from (3.99) into (3.96), we obtain
the principal term of the truncation error

L) 3

~ Thus the maximum attainable order of two step method with one nonstep
point is 6.

- 3.1.3 Implementation of hybrid predictor-corrector methods
The values of the ordinates and the slopes are known at the & points and
~ we wish to determine the ordinate yn+ from the formula

E k ‘
Ynp1 = E aj yn51+1+h Eoblﬁ'_l+'+h Clﬁr-l,ﬂv (3.100)

We cannot determine yn;.; directly from (3.100) even if it is explicit, i.e.
bo = 0, since it contains ®n the right side the term f.-e,4+1. Therefore, we use
a predictor P‘® to determine yn_s,+, and then evaluate f(z, y) to get fu-e,4,.
Thus, if ¢3.100) is an explicit hybrid formula, then we use the following
sequence of operations to find yn+;.

k k.
P(') D n—e4l = ’zl dj y,,_]+1+h jgl bjfn—l+l

E :.f"_'l""vl =f(t“—.l+:l’ }’n—,—h-i-l)
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k k
PE 2y = ,-7:1 aj }’n-f+1+hj§ by facssrth e farnn

E: fas1 = f (tn+1, VYn+1) (3.101)

The above sequence of operations may be called P E P E mode. If we

use the implicit hybrid method (3.100) to find ya+1, then in addition to the

predictor P®, we also require a predictor to predict Va1 The value y,+;can

be predicted in two ways, either we use P®_ a predictor which does not

contain the term at a nonstep point or we use a hybrid predictor P which

contains a term at a nonstep point. Thus we have two types of modes, either
/

@) PWEP®ECHE v (3.102)
(ii) ‘ PWEPHECH E (3.103)

where C® denotes the implicit hybrid method (3.100). We shall now.
illustrate the various predictor-corrector modes by applying to a few simple
cases. _

Let us consider the following P® — P schemes

2
POy, o = y,.+—3- h fa

P gy = puk e St Yo (3.104)
Applying (3.104) to y' = Ay, then P@® E P™ E mode becomes
PO o = ot 5 Mo = (14530 )3n
E : f(tasans, Yns213) = AVnsans
Py = vt a3 (145 4 e |
E Sl = 140+ S22 ),
The characteristic equation of the mode P®) E PW E s given by
£ = 1+Ah+—@g)—z‘ (3.105)

We cannot talk about the stability of the predictor P®, since it has the
characteristic equation which is no longer a polynomial. However, from
(3.105), the mode P® E P‘®) E will be stable for —2 < Ar <0,

Next, we apply P —C® scheme

h
P® Yy = yn+—2—fn v
P . 7n+| = yn+h (2fn+112—ﬁ')
C: you = Yt (JowiHtfasia+fo) (3.106)
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equivalent first order system. However, if the higher order differential
equation is free from lower order derivatives, it is advantageous to have
direct methods of solution since it is not necessary then to determine
the lower order derivatives during the course of computation.

We shall now describe the multistep methods for the second order initial
value problem of the form

Y =1ty
yte) = yo )
_ y'(to) = ¥, (3.117)
A linear multistep method of the form (3;26) for (3.117) can be written as
.k - k
Ynti 4 12-:1 @ Yot ‘Eo bi Yp—is1 (3.118)

where a;’s, b/’s are arbitrary parameters.
Symbolically, we can write (3.118) in the form

p(E) yn_ksr—h* o (E) Vpter =0 (3.119)

where p and o are the polynomials of degree k.
The formula (3.119) can only be used if we know the values of the
solution at k successive points. These k values are assumed to be given.
Furthermore, it can be assumed without loss of generality that the
polynomials p(¢) and o(£) have no common factors since in the general
case (3.119) can be reduced to a difference equation of lower order.

DEFINITION 3.12 The method (3.119) will be said to be of order p > 0if
it fulfils the p4-2 conditions

k k
2; a1 =i)+qlg—1) )_;)ob:(l—i)"'2 =14=0,1,2,..,p+1 (3.120)

Thus the method is of order p if for any y € C®+2 and for some non-
zero Cpia, We get

k X
Wtny) = tgl ay Y(tn-1+1)+h? @0 bi Y (tn-t+1)+Cpsa h"“y‘(’f’)“) (3.121)

where y{t+? is the (p+2)th derivative of y evaluated for some £ between
tn_k+, and t,41. The last term represents the truncation error.
The consistency conditions for (3.119) can be obtained as

p(1) =0, p'(1) = 0, p"(1) = 20(1) (3.122)
DEFINITION 3.13 The multistep method of the form (3.119) is said to be

stable if the modulus of no root of the polynomial p(§) exceed 1, and that
the multiplicity of the roots of modulus 1 be at most 2.
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The equations analogous to.(3.32) and (3.33) for finding the specific
methods for (3.117) are given by

o(£)~(log £)26(£) = Cpaa (E—1)PF240((6—117) (3.123)

(lgf)g)f“(‘f) = Cpra§ = 1P +0((€ 1)) (3.124)

If o(¢) is specified, (3.123) can be used to determine a p(€) of degree k,
whereas (3.124) can be used to determine o(£) of degree < k, if p(£) is spe-
cified. The (log £)? o(£) or (log €)~2 p(£) are expanded as a power series in
(€ —1) and terms up to (£—1)* can be used to give p(€) or a(§) respectively.
The linear k-step methods corresponding to p(€) = &2(£—1)? are called
Stormer’s method if o(£) obtained from (3.124) is of degree k—1 and
Cowell’s method if o(£) is of degree k. A few special cases for k = 2 (1) 6
are listed in Tables 3.13 and 3.14. For k = 2 and if o(€) is of degree 2, we
get a method of*order 4 as

hz ’ » ,r
yn+|—2yn+yn—[ == ﬁ(y11+1+10y”+y”—1) (3-125)

This is known as Numerov’s or royal road method.

The methods for o(&) = £ and p(¢), a polynomial of degree k determin-
ed from (3.123), are calied implicit differentiation type methods. Table 3.15
contains a few special cases for k = 2 (1) 6.

THEOREM 3.8 The order p of a stable linear k-step method cannot exceed
k2. A recessary and sufficient condition for p=k+2 is that k be even, and
all roots of p(£) have modulus 1. If k is odd, the order cannot exceed k+1.

Example 3.6 Let p(§) = (- 1)2(£2+42) where —1 <A < 1, find o(é).
From equation (3.124), we get

pé)  _ (= DAE-1D22¢ =D +1+2]
(log £)? llog (1+(¢ -1

o(€) = 1-FAFGHNE-D+E+HNE-1)

L E=10 + 5 (19-DHE= 1)

1 .
+ g (= 1HDE=DFHOE= 19

Thus we find that the values —1 << A < 1 give methods of order 4 and the
value A = 1 gives a sixth order method. For A =1, we get

o(é) = Tzlo' (9¢4-+104£3+234£2 - 336£ +229)



150 NUMERICAL SOLUTIONS
TABLE 3.13 COErrICIENT FOR THE FORMULA
k
Va1 = Zy'—y"—l‘*‘h"fl by y:_,-.,.l
k bl b’ ba bq bs b (]
2 1
3 13 -2 1
. 12 12 12
4 14 -3 4 1
12 12 12 12
s 2 w6 14 9% 1
240 240 240 240 240
6 317 _266 374 _216 109 18
240 240 240 240 240
TABLE 3.14 CoOErrICIENT FOR THE FORMULA
]
Yasy = 2pn=Yr_y+it ‘{o b'ylr;—l'+l
k bo b1 b’ b; bg b5 bd
0 1
2 RS 1o 1
12 i2 12
4 19 204 14 4 b
240 240 240 240 240
5 18 209 4 14 _5 1
240 240 240 240 240 240
6 4315 53994 _2307 7948 _4827 1578 _ 221
60480 60480 60480 60480 60430 60480 60480
TABLE 3.15 COErrFICIENT FOR THE FORMULA
” r”
Ya41 = o'fl a:y._u+1+h'b.,y,,+1
k b a, a, a, ag as as
2 1 2 -1
1 5 1
o3 T -2 7
4 144 1248 _ 1368 672 _1_3_2
420 420 420 420 420
s 12 14 _24 156 6 10
45 45 45 45 45 45
6 180 3132 _5265 5080 _2970 972 137
812 812 812 812 812 812 812




